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Abstract 

The relations among coupling constants and masses in the standard model ~t la Connes-Lott with 
general scalar product are computed in detail. We find a relation between the top and the Higgs 
masses. For mt = 174-t- 22 GeV it yields m .  = 277 4- 40 GeV. The Connes-Lott theory privileges 
the masses mt = 160.4 GeV and mH = 251.8 GeV. 

Subj. Class.: Quantum Field Theory 
/ 991 MSC: 81T 13 
Keywords: Standard model; Connes-Lott: Gauge field theories; Yang-Mills theories: Coupling conslants: 
Higgs masses 

O. Introduct ion 

By now the standard model of  electro-weak and strong interactions in the setting of non- 

commutative geometry [ 1 ] is well documented [ 1-6] and needs no further introduction. The 

main virtue of  non-commutative geometry in the context of  a Yang-Mi i l s -Higgs  model is 

that the entire Higgs sector including the choice of  the scalar representation has one common 

geometrical origin and is not just added by hand. 

The action of  a Yang-Mi l l s -Higgs  model consists of five pieces: the Yang-Mil ls  action, 

the Kle in-Gordon action, the integrated Higgs potential, the Dirac action, and the Yukawa 

couplings. Of these only the first has a genuine geometrical interpretation. As a consequence, 

the representation of the gauge potentials is not arbitrary, it is the adjoint representation. 

Also, the cubic and quartic self-couplings of  the gauge potentials are not arbitrary, they 

are computed from the gauge invariant scalar product on the Lie algebra and the structure 
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constants. Similarly, the couplings of the gauge potentials to the scalars and fermions in 
the Klein-Gordon and Dirac actions are fixed by geometry, as 'minimal couplings'. All the 

other coupling constants, the quadratic, cubic, and quartic ones in the Higgs potential, and 

the trilinear Yukawa couplings are arbitrary except for gauge invariance. Also, the scalar 

and the left- and fight-handed fermion representations are arbitrary. 
The action of a Connes-Lott model consists of only two pieces, the non-commutative 

Yang-Mills and Dirac actions. When expanded in terms of ordinary fields the non-commuta- 

tive gauge potential consists of the ordinary gauge potential in the adjoint representation and 
a scalar field in a representation, that is computed. At the same time, the non-commutative 

Yang-Mills action yields the ordinary Yang-Mills action, the Klein-Gordon action and the 

Higgs potential. Just as the self-couplings of the gauge potentials, the self-couplings of the 

scalars are now computed from an invariant scalar product in the non-commutative sense 

and the underlying algebraic structure. Finally the non-commutative Dirac action produces 

the ordinary Dirac action and the Yukawa couplings. Input of a Connes-Lott model is a 
finite dimensional involutive algebra, the two fermion representations and their mass matrix. 

These data then produce a very particular Yang-Mills-Higgs model [7]. Its gauge group 

is the group of unitary elements in the algebra or a subgroup thereof. This model features 

constraint gauge couplings and a fixed scalar representation. Its gauge and scalar boson 

masses are determined in terms of the fermion masses. For the standard model, the scalar 

representation comes out to be a weak isospin doublet and with the simplest scalar product 
one has [3,4,8] 

g3 = g2, sin20w = 3, m t =  2mw,  mH = 3.14mw. (1) 

All four relations are unstable under quantum corrections [9] and raise the question of how 

to quantize a field theory of non-commutative geometry. If interpreted at their natural scale 
mw,  the first two relations are in contradiction with experiment, the third is close to the 

recently announced top mass [10]. When calculating with a more general scalar product [3] 
one still gets a relation among coupling constants, 

1 1 0.25 -- sin 20w 
- - - -  + - O,  ( 2 )  
3 ot 3 ~em 

and a conflict with experiment. Connes and Lott [8] also wrote down the most general gauge 
invariant scalar product. Due to the high degree of reducibility of the fermion representations 
in the standard model, the general scalar product destroys all four relations, however leaving 
a relation between the top and the Higgs masses and leaving an inequality for sin 2 0w. There 
is a natural subclass of scalar products, that determines the top and Higgs masses as in 
Eqs. (1). Alvarez et al. [11] have carried out a renormalization group analysis of these two 
mass relations in ordinary quantum field theory. They find a weak scale dependence only. 

The purpose of this article is to give the computational details of the standard model 
with general scalar product and to discuss the phenomenological implications. The more 
mathematically inclined reader is referred to a companion paper [ 12]. 
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1. Input of  the standard model in the Connes-Lott  scheme 

The standard model in non-commutative geometry is described by two real algebras, one 

for electro-weak interactions: -4 :-- H @ C with group of unitaries SU(2) x U( I ), and 

one for strong interactions: .4' := M3(C) @ C with group of unitaries U(3) x U( 1 ). We 
denote by H the algebra of quaternions. Its elements are complex 2 x 2 matrices of the 

form 

x -?)  
y 2 " x ,  y ~ C. (3) 

Both algebras .4 and .,4' are represented on the same Hilbert space H = 7-{L @ "HR of 

left-and right-handed fermions, 

HL ----- (C 2 @C N @C 3) (~) (C 2 @cN), 

HR = ((C{~C) @C N @C 3) ~ (C @ cN). 

(4) 

(5) 

The first factor denotes weak isospin, the second N generations, N = 3, and the third 

denotes colour triplets and singlets. With respect to the standard basis 

,0, 

of 7-tL and 

UR, C'R, tR, 
eR, /JR, rR (7) 

dR, SR, bR, 

of HR, the representations are given by block diagonal matrices. For (a, b) c H @ C we 

set 

B : =  ( 0  

and define a representation of .,4 by 

a ® 1U ® 13 
0 

p(a, b) := 0 

0 

(8) 

0 0 0 

a ® l N  0 0 
0 B ® I N ® 1 3  0 
0 0 DIN 

= (pL(a )  0 ) 
0 pR(b) 

(9) 

and for (c, d) ~ 343 (C) @ C we define an -4' representation 

if(c, d) := 

1 2 ® I N ® C  0 0 
0 d12 ® IN 0 
0 0 1 2 @ I N @ C  
0 0 0 

0 

(lO) 
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The last piece of  input is the fermion mass matrix A//which constitutes the self-adjoint 

'internal Dirac operator': 

OOMs®O 13~/'~ 000 (Mu®13 0 ) 0 / 0  OoMd®13 ( 0 )Meo 
0 (0  Me*) 0 0 

"D:= (,,::,3 
(0 

= M *  0 (11) 

with 

(muO00) (moodO00) 
Mu :-- 0 mc , Md := CKM ms , 

0 0 mt  0 mb (o O o) 
Me :=  m ,  0 , (12) 

0 mr 

where CKM denotes the Cabbibo-Kobayashi-Maskawa matrix. All indicated fermion masses 

are supposed positive and different. Note that the strong interactions are vector-like: the chi- 

rality operator 

( -12@1N@13 0 0 i ) 
0 --12 ~ 1N 0 Z = 0 0 12 ® 1N ® 13 (13) 

0 0 0 1N 

and the 'Dirac operator' commute with .A t 

[79, p'(.4')] = O, (14) 
[Z, P'(.4')] = O. (15) 

2. Connes-Lott model building kit, internal space 

With this input - an involution algebra -4, a faithful representation p of A on 7-/, that 

decomposes into a left-handed representation ,OL on 7-/L and a right-handed one, and a 'Dirac 

operator' D - Connes constructs the central piece of  his model building kit, a differential 

algebra ~ . 4 .  This construction may seem complicated at first sight, but it has profound 
roots in non-commutative geometry. 

It starts with an auxiliary differential algebra J2A, the so-called universal differential 
envelope of A: 

~2°A :=  .4, (16) 
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£21A is generated by symbols 8a, a E ,4, with relations 

8 1 = 0 ,  

8(aa') = (Sa)a I + aSa'. 
(17) 

(18) 

For the moment ,,4 is an arbitrary involution algebra with generic elements a, a', ... Forget 

about quaternions and the second algebra A:. £21A consists of  finite sums of terms of the 

form aoSaj, 

and likewise for higher p 

£2PA= [Ej a~Sa{...SaJp, a~ c A  I .  (20) 

The differential ~ is defined by 

6(ao6aj .. • Sap) :=  8ao6al • . .  Sap .  (21) 

The involution * is extended from the algebra A to Y21A by putting 

(Sa)* :=  8(a*) = :  8a*. (22) 

With the definition 

(~P~)* = ~k*¢*, (23) 

the involution is extended to the whole differential envelope. 

The next step is to extend the representation p :=  PL • ,OR on 7-/ :=  ~ L  • ~R  from the 

algebra A to its universal differential envelope £2A. This extension deserves a new name: 

• £2A > ~ E n d ( 7 - L ) ,  7/" 

P 
7r(a08al . . .  Sap) : =  ( - i )Pp(a0)[7~,  p ( a l ) ] . . .  [7~, p(ap)] .  (24) 

A straightforward calculation shows that 7r is in fact a representation of  £2A as graded 

involution algebra, and we are tempted to define also a differential, again denoted by 8, on 

Jr (£2`4) by 

8Jr(~b) := 7r(8~b). (25) 

However, this definition does not make sense if there are forms ~b ~ £2A with 7r(~b) = 0 

and 7~(8~b) # 0. By dividing out these unpleasant forms, we finally arrive at the differential 
algebra ~ A ,  the real thing 

Jr (£2A) 
~ A  . -  - -  (26) 

J 
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:= Jr (3 kerTr) = :  ~ J P  (27) J 
P 

(J  for junk). On the quotient now, the differential (25) is well defined. Degree by degree 

we have 

X2°A = p(A) (28) 

because j0  = 0, 

Y2~A = 7r (.f-2 I A) (29) 

because p is faithful, and in degree p >_ 2 

~ A  = Jr(s2pA) 
Jr (3 (ker 7r)P- l )" (30) 

While ~.A has no cobomology, .Qz~A in general has. In fact, in infinite dimensions, if f 
is the algebra of complex functions on space-time M represented on the square integrable 
spinors by multiplication and if D is the genuine Dirac operator then .c2~5 v is de Rham's 
differential algebra of differential forms on M. 

We come back to our finite-dimensional case. Recall that the elements of the auxiliary 
differential algebra £2A that we introduced for book keeping purposes only are abstract 
entities defined in terms of symbols and relations. On the other hand the elements of .f2z~A, 
the 'forms' are operators on the Hilbert space ~ ,  i.e. concrete matrices of complex numbers. 
Therefore there is a natural scalar product defined by 

(~b, ~) := tr(~b*~), ~b, ~ ~ 7r(.q2PA), (31) 

for elements of equal degree and by zero for two elements of different degree. With this 
scalar product ~ v A  is a subspace of Jr(.c2.A) by definition orthogonal to the junk. As a 
subspace ~2vA inherits a scalar product which deserves a special name ( , ) .  It is given by 

(~0, ~p) = (~b, P@), q), ~p E I2PA, (32) 

where P is the orthogonal projector in 7r (I2A) onto the ortho-complement of J,  and ~b and 
@ are any representatives in their classes. Again the scalar product vanishes for forms with 
different degree. For real algebras all traces must be understood as real part of the trace. 

Now suppose that the left and right representations are reducible as the case in the standard 
model. Then there is an obvious generalization of the scalar product (31). It is constructed 
by taking the trace over each irreducible part of ~ separately and by multiplying each trace 
by an independent positive constant. The most general scalar product in this context reads 
[81 

(~b, @) := tr(~b*@z), ~b, @ 6 7r(~PA), (33) 

z is any positive operator on ~ ,  that commutes with p(A) and with 79. 
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Let us remark the existence of  a natural subclass of  scalar products [8] defined by elements 

z, that are not only in the commutant of  A but are taken from the image under p of  the 

centre of  A. 

At this stage, there is a first contact with gauge theories. Consider the vector space of 

anti-Hermitian l-forms 

{H E S2~A, H* -- - H } .  (34) 

Let us call these elements Higgses. The space of  Higgses carries an affine representation of 

the group of  unitaries 

G = {g c A ,  gg* = g*g = 1} (35) 

defined by 

Hg := p ( g ) H p ( g - l )  + p (g )~(p (g -1 ) )  

= p ( g ) H p ( g  - l )  + ( - i )p(g)[7) ,  p ( g - l ) ]  

= p (g ) [H  - iD]p(g  -~) +i73 .  /36) 

H~' is the 'gauge transform of H ' .  This transformation law makes the Higgs play the role of 

a (finite-dimensional) gauge potential. In fact every H defines a covariant derivative 6 + H, 

covariant under the left action of  G on S2~A: 

'~7/ := p (g )~ ,  ~p c I2~A,  (37) 

which means 

(6 + H ,~') , ~  = g [(6 + H)~O]. (38) 

Also we define the curvature C of H by 

C : = 6 H + H  e c S 2 2 A .  (39) 

Note that here and later H 2 is considered as an element of £2~A which means it Is the 

projection P applied to H 2 c 7r(S22,A). The curvature C is a Hermitian 2-form with 

homogeneous gauge transformations 

C g :=  6(H g) + (Hg) 2 = p ( g ) C p ( g - l ) .  (40) 

Finally we define the preliminary Higgs potential Vo(H), a functional on the space of 

Higgses, by 

Vo(H) :=  (C, C) = tr[(6H + H 2 ) p ( g H  + H2)]. (41) 

It is a polynomial of degree 4 in H with real, non-negative values. Furthermore it is gauge 
invariant, Vo(H g) = Vo(H), because of  the homogeneous transformation property of the 

curvature C and because the orthogonal projector P commutes with all gauge transforma- 
tions, p ( g ) P  = Pp(g) .  The most remarkable property of  the preliminary Higgs potential 



D. Kastler. T. Schiicker/Journal o f  Geomet~  and Physics 24 (1997) 1-19 

is that, in most cases, its minimum spontaneously breaks the group G. To see this, we 

introduce the change of  variables 

q5 :=  H - i 79. (42) 

This variable transforms homogeneously: 

05g : H g - i 79 : p ( g ) [ H  - i 79]p(g-1) + i 79 - i 79 = p ( g ) 0 5 p ( g - l ) .  (43) 

Now H = 0, or equivalently 05 = - i  79, is certainly a minimum of the preliminary Higgs 

potential and this minimum spontaneously breaks G if it is gauge variant. For instance, 

for vector-like models like electro- and chromo-dynamics, H vanishes identically and the 

gauge bosons remain massless. 

The invariance group of the Higgs potential is the group of unitaries G, a subset of the 

algebra ..4. G can be reduced to a special subgroup by means of a so-called unimodularity 

condition. These conditions are defined on G o , the connected component of the identity in 

G. For a finite-dimensional algebra ..4 represented on a finite-dimensional Hilbert space 7-/, 

the unimodularity conditions take a simple form. Every element g 6 G o can be written 

g = e x, (44) 

where X is an element in the Lie algebra .q of  G. The Lie algebra .q is again a subset of the 

algebra .A, 

:~ = {X ~ A, X* + X = 0}. (45) 

Choose an element p in the centre of .,4 such that t rp(p)  6 7/, p stands for projection. For 

every p, there is a unimodularity condition 

t r p ( X p )  = 0 

defining a subgroup of G °, 

G p  := {g = e  x 6 G O , t r p ( X p ) - - - - O } .  

(46) 

(47) 

3. Internal space of the standard model 

We now apply the construction outlined above to the standard model. Obviously, the 
standard model is not the right example to get familiar with the Connes-Lott  scheme. 

Miraculously enough, the standard model contains the minimax example, analogue of 

the Georgi-Glashow SO(3) model [13] in the Yang-Mills-Higgs scheme (a maximum 
of pleasure with a minimum of effort). This example represents the electro-weak algebra 

.,4 = H ~ C on t w o  generations of  leptons. Its only drawback is neutrinos with electric 
charge, a drawback that can be corrected by adding strong interactions. 

Anyway, let us start the computation of  the differential algebra $2~.A for the electro-weak 
algebra with generic element (a, b) 6 H @ C represented on the long list of fermions. A 

general 1-form is a sum of terms 
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7r ((a0, bo)8(al , bl ) ) 

-- - i (  0 
pR(b0) (M* pL(al) -- pR(bl )M*)  

and as vector space 

pL(a0) (MPR(bl) -- PL ( a l ) M )  
) 0 

(48) 

~21A = i j~4,pL(]7/,) 0 

The Higgs being an anti-Hermitian 1-form 

( 0  pL(h)M ) 
H = i M*PL(h*) 0 " 

is parametrized by one complex doublet 

( h ' )  h ' ' h 2 E C ' h 2  ' 

The junk in degree 2 turns out to be 

with 

(49) 

-h2) hi 
h = h2 /Tti • H, (50) 

(51) 

(52) 

where y is a positive, diagonal N × N matrix and x is a positive 3 × 3 matrix. Note that 

this z also commutes with the chirality operator X. The scalar product defined with this z 

has a natural interpretation. Indeed, we shall see later that, without loss of  generality, we 

may take x to be a positive multiple of the identity. Then, the general scalar product is just 

a sum of the simplest scalar products in each irreducible part of the fermion representation, 

each weighted with a separate positive constant. We have four irreducible parts, the three 
lepton families and all quarks together. Due to the Cabbibo-Kobayashi-Maskawa mixing, 

the ponderations of  the three quark families are identical. If, in addition, we suppose that z 

lie in p(centre.A) then we have x = X 13, Y = X 1N with a positive constant X. 

With respect to the general scalar product, we can write the 2-forms as 

0 M*pL(c )M , a, c • H (551 

(54) Z ---- 

1 2 Q 1 N ~ X  0 0 0 ~  

°oJ 0 1 2 ® y  0 

0 0 12 ® IN ® x  ' 
0 0 0 y 

, (tMuM:- 0 ,)  
21 :=  2 - 0 - M e M  e . "  (53) 

TO project it out, we use the general scalar product (33) with the real part of  the trace. Here 

the most general z, that commutes with p (.,4) and D, has the form 
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1 ( ( M u M * + M d M ~ ) ® 1 3  0 , )  (56) 
~' :---- 2 0 Me M e " 

Since zr is a homomorphism of involution algebras, the product in .f2vA is given by matrix 
multiplication followed by the orthogonal projection P and the involution is given by 
transposition complex conjugation. In order to calculate the differential 8, we go back to 
the universal differential envelope. The result is 

( 0  pL(h).M) ( ~ ® Z '  0 ) (57) 
i .A/I,pL(~, ) 0 i • ~ 0 .A/[*pL(c).A/[ 

with ~ = c = h +/~*. 
We are now in position to compute the curvature and the preliminary Higgs potential: 

C := ~H + H2 = (I _ [qo,2) ( t2 ® .~ O )  0 M * M  ' (58) 

where we have introduced the homogeneous scalar variable 

( 0 pL(q0)J~ ) (¢Pl --~2) 
:= H - i79 ----: i J ~ * P L ( ~ * )  0 , ~0 = • H, (59) ~o2 ~1 

]~012 := [~o112 q - Ifp2l 2. (60) 

The preliminary Higgs potential 

Vo = tr[C2z] = (1 - Iqo12)2( 3 tr[(M*uMu) 2] trx + 3 tr[(M~Md)2] trx 
+ 1  * * 1 * * tr[MuMuMaMd]tr x + ~ tr[MdM~MuMu] tr x 

+ 3 tr[(M.Me)2y]) (61) 

breaks the SU(2) × U(I) symmetry down to U(1). 
Finally we must compute the differential algebra S2vA' of the strong algebra. As the 

strong interactions are vector-like this is trivial: 

0 f S2vA = p'(,A'), S2PA ' = 0, p _> 1. (62) 

Consequently there is no Higgs and no Higgs potential in the strong internal space. For 
later use, we still need the general positive operator z t on ~ ,  that commutes with p'(A') 
and with the internal Dirac operator 79: 

(o o ) 13 o 0) ,3 o}  CKM S C~M 0 CKMp 
o (0 0) o (o) 
o ) (; :) 

0 PC~M ® 13 0 ® 13 0 

0 (0 w) 0 v 
(63) 
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where r, s, u, v, k, p and w are Hermitian, N × N matrices. All of  them with exception ofu are 

diagonal. If  in addition we suppose that z' lie in p ' (centreA t) then we have r = s = ,kq 1 N, 

u = v = )~/1N with positive constants )~q, ~-/ and we have k = p = w = 0. Note that 
a general z' in the commutant does not commute with the chirality operator unless we set 

k = p = w = O .  

4. Connes-Lott model building kit, space--time added 

In this section, the Higgses H are promoted to genuine fields, i.e. space-t ime dependent 

vectors. As already in classical quantum mechanics, this promotion is achieved by tensoriz- 
ing with functions. Let us denote by .Y" the algebra of  (smooth, real or complex valued) 

functions over space-t ime M. Consider the algebra -At : =  ~ @ .Z. The group of unitaries of 
the tensor algebra -At is the gauged version of the group of unitaries of  the internal algebra 

..4, i.e. the group of functions from space-t ime into the group G. Consider the represen- 

tation Pt ;= - @ P of the tensor algebra on the tensor product 7-~ t "=  S @ 7-~, where S 
is the Hilbert space of square integrable spinors on which functions act by multiplication: 

( . f~ ) (x )  := f (x)Tz(x) ,  f 6 5 t-, 7z 6 S. We denote the genuine Dirac operator by ~I and 

its chirality operator by Vs. The definition of the tensor product of Dirac operators, 

79t :=  ~ ®  1 + y 5  ®'D,  (64) 

comes from non-commutative geometry. We now repeat the above construction for the 

infinite-dimensional algebra -At with representation/gt and Dirac operator 79t. As already 
stated, for ,4 = C, ~ = C, A.-/= 0, the differential algebra -f27)t.At is isomorphic to the de 

Rham algebra of  differential forms ~ ( M ,  C). For general ,4, using the notations of [ 14], 

an anti-Herrnitian l-form 

Ht E ff2/t.At, Ht* ~--- - H t ,  

contains two pieces, an anti-Hermitian Higgsfield H ~ S2°(M, S21.A) and a genuine gauge 

field A E S21 (M, p(~)) with values in the Lie algebra of the group of unitaries 

: = { X E A ,  X * + X = 0 }  (65) 

represented on 7-/. The curvature of  Ht 

Ct : =  ~t Ht + H~ c ~¢22 t .At 

contains three pieces, 

C t = C + F -  DqO y5, 

the ordinary, now x-dependent curvature C = 3H + H 2, the field strength 

F := dA + I [A, A] c ~ 2 ( M ,  P(~3)) 

(66) 

(67) 

(68) 
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and the covariant derivative of 

D~  = d~ + [A~ - ~A] ~ £21(M, $2~A). (69) 

Note that the covariant derivative may be applied to q3, thanks to its homogeneous trans- 
formation law, Eq. (43). 

The definition of the Higgs potential in the infinite-dimensional space 

Vt(Ht) := (Ct, Ct) (70) 

requires a suitable regularization of the sum of eigenvalues over the space of spinors S. 
Here we have to suppose space-time to be compact and Euclidean. Then, the regularization 
is achieved by the Dixmier trace which allows an explicit computation of Vt. One of the 

miracles in the Connes-Lott scheme is that Vt alone reproduces the complete bosonic action 
of a Yang-Mills-Higgs model. Indeed, it consists of three pieces, the Yang-Mills action, 
the covariant Klein-Gordon action and an integrated Higgs potential 

vt(a+H)=f tr(F,Fz)+f (71) 
M M M 

As the preliminary Higgs potential V0, the (final) Higgs potential V is calculated as a 
function of the fermion masses, 

V := V0 - tr[uC*aC z] = tr[(C - otC)*(C - o{C) z], (72) 

where the linear map 

a • £22A > p(A) + Jr(6(ker zr) 1) (73) 

is determined by the two equations 

tr[R*(C - ~C) z] = 0 for all R ~ p(,A), (74) 

tr[K*aC z] = 0 for all K 6 zr(g(kerzt)l). (75) 

All remaining traces are over the finite-dimensional Hilbert space 7-(. We denote the Hodge 
star by . .  It should not be confused with the involution *. Note the 'wrong' relative sign of 
the third term in Eq. (71). The sign is in fact correct for a Euclidean space-time. 

A similar miracle happens in the fermionic sector, where the completely covariant action 
~*(Dt + iHt)tp reproduces the complete fermionic action of a Yang-Mills-Higgs model. 
We denote by 

@ = 1]~L"[-~rR E?"/t-----S@ (?-~L~7-{R), 

the multiplets of spinors and by ~p* the dual of ~ with respect to the scalar product of the 
concerned Hilbert space. For the purpose of this general section, we set 

H =: i (/Tt0. ~ )  6 S21A, (76) 
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~ = H - i D = : i ( ~  O ~ )  c ~21A. 

13 

(77) 

f f ~~* 1/-r* ('Dt ÷ iHt)~r = *~*(  ~ + iy (A) )~  -- *(lpI~]S/y51PR + ~pR h y51PL) 

M M 

+ f *(lPI~MY51PR + lPI~M*y5lPL) 
M 

M M 

(78) 

containing the ordinary Dirac action and the Yukawa couplings. Note the unusual appearance 

of 9/5 in the fermionic action (78). Just as the 'wrong' signs in the bosonic action (71 ), these 

Y5 are proper to the Euclidean signature and disappear in the Minkowski signature. For 

details see the last reference of [ 1 ], example 2, 'massless chiral electrodynamics'. 
We end this section with a word of caution. In fact, we have slightly over-simplified 

the outline of the Connes-Lott scheme. The omitted details can be found in [7]. They are 
irrelevant for our present purpose, the standard model to which we return now. 

5. S t a n d a r d  m o d e l ,  s p a c e - t i m e  a d d e d  

Let us apply the construction outlined above to the standard model. Recall the expression 

of the curvature in the electro-weak sector 

C = (l _ l~0,2) (12  ® ~' 0 ) 
0 A4*M ' (79) 

A straightforward application of Eqs. (74) and (75) - taking the real part of the traces is 

understood - yields the projection c~C. It is again block diagonal with diagonal 

elements: 

1 - k o l  2 tr[M*Mu]trx + tr[M~Md]trx + tr[M*Mey] 
OlfqL - -  2 N tr x + t ry  

oICgL - -  - -  

o t C q R  - -  - -  

1 - Igol 2 tr[M*Mu] trx + tr[M,~Ma] trx + tr[M*Me y] 

2 Ntrx  + t ry  

l -- ]~0l 2 tr[M*Mu] trx + tr[M~Ma] trx + tr[M*Me y] 

2 Ntrx  + t r y /2  

1 - Igol 2 tr[M*M.] t rx + tr[M~Md] trx + tr[M*Me y] 

12 ® IN ® 13, 

(80) 

12 ® I N ,  (81) 

12 ® 1N ® 13, 

(82) 

IN. (83) otf£R - -  - -  
2 Ntrx  + t r y /2  
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The Higgs potential is computed next, 

V = K(1 -[q912) 2, (84) 

K := 3 tr[(MSMu)2] t rx  + 3 tr[(MSMd)2] t rx  + t r[MuM*MdM~] t rx  

tr[M e M e M  e Me y] - - Ntrx-+try + Ntrx+try /2  ' 

L := t r [M*Mu]trx  + t r [ M j M , l l t r x  + tr[M*Mey] .  

(85) 

(86) 

Note that the scalar fields q)l and q)2 are not properly normalized, they are dimensionless. 

To get their normalization straight we have to compute the factor in front of  the kinetic term 

in the Klein-Gordon action: 

t r ( d ~ *  • d ~  z) = *2LI0~ol 2. (87) 

Likewise, we need the normalization of the electro-weak gauge bosons: 

t r ( F ,  F z )  = , ( N t r x  + t ry ) (OuW + OuW -v  . . . .  ). (88) 

We end up with the following mass relations: 

L 
m 2 - - N t r x +  t r y '  (89) 

m2 = 2K (90) 
L 

Finally, we turn to the relations among coupling constants. They are due to the fact that 

the gauge invariant scalar product on the internal Lie algebra, the Lie algebra of the group 

of  unitaries .q :=  {X ~ .4, X* + X = 0}, in the Yang-Mills action (71) is not general but 
stems from the trace over the fermion representation p on 7-/. Since this representation is 
faithful the scalar product (31) indeed induces an invariant scalar product on .q. 

The fact that the standard model can be written in the setting of non-commutative geom- 
etry depends crucially, at this point, on two happy circumstances. Firstly, the electric charge 
'generator '  

0 /°> °° ) ( v  o o o 

Q = 0 _° 1 , IN 0 (91) 

0 0 0 --I N 

is an element of  ip(.q) @ ip'(.q'). Indeed it is a linear combination of weak isospin 13 and 
elements of  the three u (1) factors: 

Q = P  0 - 1 / 2  ' 0  + ~ p ( 0 ,  i ) + ~ p ' ( i l 3 , 0 ) - ~ p ' ( 0 ,  i). (92) 
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We have put 'generator '  in quotation marks because iQ is a Lie algebra element, not Q. 

The weak angle 0w measures the proportion of weak isospin in the electric charge: 

Q = sin 0w 13 Y ]Q] ~ + cOS0w ]y----~. (93) 

The hypercharge Y is a linear combination of the three u (1) factors 

Y := ~ p(0,  i ) +  p ' ( i l3 ,  0 ) -  ~ p ' (0,  i). (94) 

Here comes the second happy circumstance, this particular combination Y is singled out by 

two unimodularity conditions. They reduce the group of unitaries SU (2) × U (1) × U (3) × 

U( I )  to SU(2) × U(1) × SU(3) with the surviving U( I )  generated by the hypercharge. 

Indeed, the centre of  ¢4 @ ,4' is four dimensional with basis Pl . . . . .  P4. Pl := p(12, 0) 

projects on ~,  P2 := p(0, 1) on C, P3 := Pr(13, 0) on M3(C), and P4 = p'(O, l) on C', 
and the group of the standard model is Gpl A Gp2. 

Let us come back to the calculation of the weak angle. Eq. (93) is a matrix of equations. 

Let us take the difference of the two diagonal elements corresponding to the left-handed 
neutrino and electron: 

1 1 
=-- sin 0w - -  (95) 

IQI 1131' 

sin 2 0w = (•3, 13). (96) 
(Q, Q) 

The numerator is readily computed, 

(13 ,13)=  tr p 0 - 1 / 2  , 0  z = ½ ( N t r x +  t ry) .  (97) 

We compute the denominator with Pythagoras'  kind help, 

[(( 1/2 0 z + ¼ t r [ p ( 0 , 1 ) 2 z ]  ( Q , Q ) = t r  p 0 - 2 ' 

+ ±  , 2 , ~ tr[p'(0,  1)2z '] 36 tr[p (13,0) z ] + 

= ( N t r x  + 3 t r y )  + ~ ( t r r  + t r s ) +  l ( t r u / 2  + t ry) .  (98) 

Finally the mixing angle is given by 

sin 2 0w = N tr x + tr Y . (99) 
2 N t r x  + (3 /2 ) t r  y + ( i / 3 ) ( t r r  + t rs)  + (1/2) t ru + t ry  

In a similar fashion, the ratio between strong and weak coupling is computed, 

2 
( g 3 ~ -  (13, 13)__ 1 N t r x + t r y  (100) 

 g2J _ (C,C) 2 t r r +  t rs  ' 
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where 

C : = p l  0 - 1 / 2  ,0  . (101) 

0 0 

Here C stands for colour not for curvature. 
In this calculation z and z' are different in general, implying that the electro-weak sector 

p (..4) is orthogonal to the strong sector pl (..4'). In the special case where z = z ~ a different 

choice is possible: 

(a, a ' )  :=  t r [ p ( a ) * p ' ( a ' ) z ] ,  a c A ,  a'  ~ ,4'. (102) 

Then the two U(1) factors p(0,  1) and p ' (0,  1) are not orthogonal anymore and the value 

of sin 20w comes out smaller [3]. This choice is closer to grand unified models and yields 
sinZ0w = 3_8 = 0.375 for z = z' = 1 to be compared to sin 20w - 2912 _ 0.414 from 

Eq. (99). 

6. Conclusions 

Writing the standard model in terms of non-commutative geometry yields the four con- 
straints (89, 90, 99, 100) for the W- and Higgs masses, the weak mixing angle and the ratio 

of  strong and weak coupling constants. Note that the off diagonal, chirality mixing terms k, 

p, and w in z' have dropped out. Due to the highly reducible form of the standard model, 

these four constraints involve, in the most general case, five arbitrary, positive parameters, 

the three eigenvalues yl ,  y2, Y3 of the diagonal matrix 3 y / t r  x, 

t r r  + t rs  
a .-- , (103) 

tr x 

and 

t r u / 2  + t ry  
fl .-- (104) 

t r  x 

With these parameters the first constraint reads 

2 
+ ms + + m 2 = 3m 2 - - ( m  2 + m c m2u) 

1 2 - -  m 2 )  1 2 _ m 2 )  1 2 _ m 2) + j Y l ( m w  + jYz(mw + j y 3 ( m w  

~ ( 3 +  Yl+Y2+3 Y 3 ) m  2 .  (105) 

This approximation is as good as the present day experimental accuracy in the measurement 
of  the W-mass, 

mw = 80.20 4- 0.26 GeV, v im 2 - I / 3 m  2 = 80.16 GeV. (106) 

For all practical purposes, we therefore have the inequality 

m t >  q / 3 m w  > "v/-3me. (107) 
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Similarly we get from the second constraint 

mH 
< < ( 1 0 8 )  

mt 

Both constraints together determine the Higgs mass as a function of  the top mass: 

m H ~ / l l + 3 R  __8+2R 7 + R  mw (109) 

with 

R m2 - 4 m 2  
.-- > - 1 .  (I 10) 

R vanishes in the subclass of  scalar products coming from the centre. Note that the Higgs 

mass is an increasing function of  the top mass, while the renormalization group analysis 

yields a slowly decreasing function [11 ]. 

The third constraint, 

sin20w = 3 + ( l / 3 )  y~yj  (111) 
6 +  (1/2) y].yj + (1/3)c~ + 3 '  

yields an inequality, 

2 4 + R  
sin20w < - - - .  (112) 

3 5 + R  

The last constraint, 

g3 3 + ( 1 / 3 ) y ~ y j  (113) 
\ g2 / 2~ 

is empty. 

If we take the natural subclass of scalar products with z and z' in the centres, the constraints 

are more stringent. Indeed, we are now left with only two positive parameters q and f: 

X 
3'1 - - Y 2 - - Y 3 -  - - -  1. (114) 

X tr13/3 

_ 2Xqtr 1u _ 2~.q = :  2q, (115) 
Xtr 13 )~ 

(3/2))~e tr 1N 3 ,ke 3 
fl - _ .  -£ ,  (116) 

Xtr l3  2 X 2 

and the constraints read 

m t = 2 m w ,  R = 0 ,  (117) 

mH = 3 .14mw,  (118) 

sin 2 0w = 4 8 < - -  = 0.533, (119) 
(15/2) + (2/3)q + (3/2)g 15 
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g3"] 1 (120) 

The simplest  scalar product  is obtained from z = p(12,  1) and z: = p ' (13,  l) .  Then 

q = ~ and we get 

sin2 0w 29 0.414, = 1. (121) 

We should point  out that the most  clear cut 'predic t ion '  of  Connes  and Lott concerns 

the mass ratio of  the W and the Z,  a unit  p-parameter  without any appeal. However, even 

without such numerical  tests, it seems clear to us that non-commuta t ive  geometry is intrinsic 

to the standard model.  One may very well formulate and test general  relativity using flat 

geometry exclusively. Still, we all agree that R iemann ian  geometry is the natural setting - 

for at least two reasons independent  of  personal taste. We appreciate the use of the power- 

ful computat ional  tools, that the mathemat ic ians  have developed in R iemann ian  geometry. 

Secondly, there are infinitely more gravitational theories within Eucl idean geometry. Like- 

wise, commutat ive  geometry is perfectly sufficient to write down the standard model  and 

to compute  cross sections, still non-commuta t ive  geometry is superior [7]. Maybe  one day, 

we will know the masses  of  the top and the Higgs. And  maybe  then, the elements  z and z', 

that do not come from the centres, will acquire the status of  the cosmological  constant.  
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